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TECHNICAL MEMORANDIM NO.. 1116

STABTLITY OF PLATES AND SHELLS
BEYOND THE PROPORTTONAL LIMIT*

By A. A. Tlyushin

The problem of elastic equilibrium of plates, shells, and, in
general, of thin-walled elements of metal structures and machines
has been solved in the basic works of Bryan (reference 1), Timoshenko
(reference 2), and many of their followers (reference 3). But essential
difficulties were met in comnection with the experimental verification
of Euler's formuls that could not be resolved within:the bounds of the
theory of elasticity. In practical applications, rods, plates, tubes,
and other forms of shellg, usually having only rclatively thin walls,
under the action of compressive forces often go beyond the proportional
1limit beforo reaching the critical (elﬂstic) point, and therefore
become unstable at appreciably lower loade.

This circumstance of the diminishing value of the formulas
glving the criticdl loads under elastic deformations was completely
cleared up in the fundamental works of Engesser (reference 4), and
von Karman (reference 5), who showed the limits of applicability of
Euler'!s formula and extended these limits to the whole range of
elastico~plastic deformations of rods under compression. The wildely
known resvlt that Euler's Formuls remains valld even for plastic
deformations if Young's modulus E is replaced by von Kérman's
modulus K reccived such exact experimental verification that it
wag transferred automatically uo many other cases of instabllity

Thus, tor rectanpular plates compressed in bhe x—direction by '
a force P, Bleich (reference 6) without proof proposes.to gemeralize -
the equation of Brysn to the case of plastic .deformztiong by -the. 1ntﬁo—
duction of a corrective factor

s *"Ustoichivost Plastinok 1 Obolochek za Predelom Uprugosti Mo
Prikladnaya Matemstike 1 Mekhenika, N.S. 8. No. 5, L9hl ~-pp. 3’*‘7-350
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Geckeler (reforence 7) just as formelly generalizes the equation of
longitudinal bending of thin-walled tubes that buckle into axially
symetrical waves

pEL¥, p ¥, By (@
dx’ dx- R®

and shows that an analogous congideration of plasticity with the
aid of von Kédrman's modulus can be made in many other cases.

Among engineers the idea has very wide circulation that if
the material of a plate or shell has a pronounced yleld—platean
at a stress equal to the yield limit the plate will commletely
loose its load—carrying ability.

Iet us note at the very beginning that all these conjectures
turn out not only to be groundless but also, generally speaking,
incorrect, They lead to an incorrect egtimate of the load-bearing
ability of struétures and to too great a welght.

To Brylaard (refercnce 8) belongs the attempt to formulate the
problem of the stability of compressed plates beyond the elastic
limit on the basis of the Hencky-Miges theory of plasbticity. But
he was not able to cope with the difficulties of anslysis of the
stresses and strains in the elastico-plastic region, and after
obtaining his formulas for calculation he had to introduce empirical
corrections. As for other works it is difficult to point out any. in
which the reasoning and deductions were more basic or, better, less
‘bageless than in the mentioned works of Bleich and Geckeler.

In the present paper is examined the method of investigating the
stability of plates arid shells beyond the elagtic limit, that proceeds
from the Heneralization of the Hencky-Mises theory of elastlco-plastic
deformations glven in the works of Smirnov-Alyavev (reference 9),
Schmidt (reference 10), and in our papers (referonce 11).
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1.. TAW OF PLASTICTTY FOR STATE OF PIANE STRESS
. IN VARIATTONAL:FORM_ .- .

Tet us define the coordinates x, y, 3z, such that the xy-—-plane
is tangent to the middle surface of the shell; ‘take the x— and y-axes
directed along the tangents to the arbitrarlly choson orthogonal
curvilinear coordinstes o, B, and the z-axis normal to the surface.

The basic thesis of the theory of shells is that st each surface
z = constant there exists a state of plane stress varying with =z.

The connection between the stresges X ,AYy, Xy, and strains’ © 4y

Oyys Oxy, can be written in the form

l
XX = ’-%Gll bt CD(Ei)[ ( -2- eyy> .
Yy = hG’l - w(Gin \?yy,+-5 ex%> > (1.1)
X, = G[l - w(Ei).lexy |
- -
The "intensity of stress" oy
o4 =‘V/£X? + er - Xny + 3Xy2 ‘ - (1L.2)
and "intengity of strain" €s
. . .
€y = —= \/gxx? + eyy2 + OyyOyy + % exyz (1.3)
V3 .
are connectod by the relation

go that the function w is defined by the physical propertics. of the’
material,
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Let us find the variabion -of: therintensity. of strain *

dey . - LTI VY Je

N i- . 3 i

Bei = \ Sexx_+ T Seyy + ~ Sexy
“Cxx Cyy “Cxy

1 N o )
Xy0e... + Y de.,. + X e
XX, :
3uey ( e X})

From this\ﬁe-get

038¢q = X80, + Yyﬁeyy + Xyaexy (1.3)

Under the actlon of given external forces let the shell have the

definite stress-condition X, Y&g( Tv.' Instability sets in when,

"at certain va]ues of the exterhnal rorces in sddition to the indicated
equilibrium state of stress, another state X, + 8%, Y + BY

X + 6X" is p0881ble, where the transition from the Plrst o the
seoond bakes place under constant forces.

Assume that we know the strain differences between the second
and first equilibrium states B8 yx Beyv, SP

Before instebility one region of a shell IIl may be in a
plagtic state and another region Y in an elastic state. After
instability the region II will divide into two parts; II-—-»II
and II-—7Y; in the former, loading will continue, that is, ‘the
transition from the first c"cate to the seoond p“oduces the further

plastic deTormatlons -

while in the latter, unloading occurs; that 1s, this trangition
produces again elastic 6e|ormat1ons :

1Trgnslator 8 note' II ~ plasticheskii (plastic); Y—uprugii
(elastic). R ST :
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.end represents a certain surface . z ='zy (a,B),
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Thus the boundary between the two regions TISSTT. and IT )Y
has the equation.

,

04865 = X Boy, + YyESeyy + Xyaexy =0 . (1.6)

It is not necessary to investigate specially the region of )
purely elastic deformations, since the function w(eq) for usual

materials has everywhore a continuous- derivative and’ therefore at
ingtability the rcgion Y will remain elastic; to 1t are spplied
the results of the theory of elasticity.

Let us investlgrate the relation between the variations of
gtress and strain for the region TII—TII. Verying (1.1) we find

' 1 1
BXy hGl(l — 0){Beyy + Seyy) (xx 5 ,3;> e SeiJ

i

dw
sxy = GI(1 - (D)Sexy ~ Eyy — SGJ
de
_ 1 4
Let vs introduce the symbols —
Xx o'
8 = e
“i\ 1-w-
v "‘";"* ' . .
»
b = ...Z. > . N 1.
Tu\i e 7 _ (1.7)
X ot
Cc = '-—y-\ _Q) .
01 V1 —-w
ot = 2
-dei _
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L=

= (1 = w) A - (1.8)

i

|

=

Ql'c:
Q

i

Using these in equations (1.1) and (1.5) we get finally

SXX o :
—~— = (Ui - a%) Beyy + (21 =~ ab) 86,y — acleyy
g 1 ’ v )
8Y {
J v 2 B2 S
———— 0T - ’ - - — J .
- (20 — 8b) By, + (M7= D7) Beyy = doBo, . (1.9)
SXy L
v——— =. a—— 4 L (0 Ead 2
5 acde ., pchyy + (i - c?) B8,

—?

For the region II-—»Y it ig necessary -to put in (1.9) o = 0,

o= By = %~, Thus
i —
8X
x .
— = UL S TN
o1 MO8 g QMO eyy
5Y ,
;,Z = 208epy + MigBe, . (3..20)
i y
8Xy
= 1.5
Gi “-O eXy

-

The expression (1.9) shows that, in the reglon II-—II, as
the result of instability, there appears the characteristic aspect
of anisgotropy when the additional normal stresses demend alsoc on
the varistions of the shear strains and the additional shear
stresses on the variations of the normal gtrains.

2. TAW OF PLASTICITY IN VARTATIONAL FORM
FOR PIATES AND SHELLS

Instabllity is attended by changes in the first and second
quadratic forms of the middle surface. ILet e, ¢ be the
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direét gtrain in the ~x eand -y -directions and ¢y = ?63 the shear

gtrain In the xy-plane. appropriate to the change in the first
quadratic form, and %, X os T the curvatures and twilst appropriate

to the change in the second quadratic form. The quantities considered
represent the differences between the strains and curvatures after
and before buckling, for which reason the guantities XJJ XE’ T

are called also distortions.

! The six quant.u,ieu Gi’ e?,7 €., Xl, Xﬂ,‘ T can be expressed

3 2
in terms of the displacements wu, v, w, by means of partial derive—
tives of not higher than the second order in the curvilinear coordi-
nates a, $ 3in the most general case. These expressions we shall
conslder known, inasmuch as they are derived in many treatuents on
the ‘theory of elasticity and elastic stability.

The strains in a surface at a distance =z from the middle
surface are given by lineer functions of 2z:

-

8exx = Gy - zXl

Bo o = €p = Zhy ' (2.1)
= -0

Bexy 253 22T

On the basis of equation (1.6), we find the boundary of the
regions II->II and II— Y, denoting the appropriaste ordinate
by zg : ,

XXC 1 + Y € + 2X_¢&
2y = ye ~¥3 (2.2)

xxl + Y&AQ + Vyx

For definiteness,‘we'aséﬁme that the rogion II—>II adjoins
the surface of the shell =z = % h and the region TI-—7Y adjoins

the surface 3z = % h, -where h -is 'the thickness of the shell.
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Then from equations (1.9), (1.10), and (2.1) we have for

1
Eh;z;zo —

8Xy

.(.’.;_ = (i - ae)sl + (o0 ~ a.‘o)e2 - ?ace3 - zPhﬁ - ae))ltL

+ (20 - a‘n)‘»f2 — 2acT

5Y :

I _ (o — =b)s TR - _‘;_—__ N

5 = (2 cub)sl + (41 -1 )62 che3 z “(eu a,b)Xl 7(2.3)
+ (MT - pP)%, —~ 2beT

SX . [ .

LAV acey = boe, + 2(1 ~ e, ~ z|—acX, ~ bcX, + 2(hp - 02)1'—‘

A 2 3 T T T P iR

-

— = b ey + eﬁoeg - z(h{loxl + 2R, X2)
—_— = I 0 - 2y TN >
Fgeq + huoee z(;goxl + uo)(g) (2.4)

- —— 0 T
2 € zz,uo

Now we may write the variations of tho resultant middle—surface
forces

’l;éh
3T, = 3X_ dz
& lj_.}.h X
2
p% h -«
8Ty = [ ° BY dz (2.5)
U_in :
R
% h
88 = —-l-'h‘éXV dz
2
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Employing the following dimensionless quantities for the di stortions

~ and the ordinate

Z

X =X, X 2iuX ,F el =%,2=32 B
1 = 5 by, o 2hX2,'r_2hT._X3,z hz,(l}, > -1)
and taking into account the different expressions for axx, SYy R
8Xy for 122 2%, end Z, 2 %2 -, we find
28T 'z BX ' ﬂ SX 3.0
-—-—}- = / — dz + { e dz = > [i't,.}('l) + X T (i)J
hoy /-1 1 Jzo 71 1=1
28T Eo BY 1 8Y 3 -
2 _ /7 = < 37 + —& az = } i eitp(i) + Xi"rp(i)‘ S
hoy, - %% Ji, %1 =lLte >
7o B8X 1 38X 3 . N
285 / L 47 + L dz = > |e.t (1) 4 /iTD('i)‘l
hay /-1 o3 - o Jzgy %1 iz 13 3.
-
where tk(i), (1) are defined by the formulas
tl‘ = )'!(.llo + !:1) + J“‘(g'o - EL)io - ag(l - io)
tl" = 2(!10 + ﬁ) + 2(‘10 - a)E‘o - ab(l - EC>)
6™ = —2ac(l — %)
tpt = 2(fp + i) + 2(F, — @)z, — ab(l — 2)
ty" = W(iig + 8) + by = 12, — DAL = )
to™ = —2bo(l - 2,)

(2.6)

(2.7)
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-
i

—ac(l — z,)

ct
i

3" = “be(l = zo)

d-
i

- - o n -
2(fi, + U) + 2(i, — B)z, = 2c7(1 - 2)

-
-

i
o
"
i

(o]

i
=
S?
+

k]

i
@

_]
H-
i
Tt
O
I
gol]
+ .
POl
%)
S
.
-2
i
[ ]
O
N
S

o -5 2
T.™ = ac(l %o )

4
1]

_ -1 S
(éo B+ 3 ab) (1 — zog)

- - i -
TS = [?(uo - 1) + % b2 ;(l -~ 202)

—

72'" = be(l — 25°)

473' = % ac(l — 202)

Ty }5 be(l — zo?)

T ([l — 8+ )1 - 2G2)

Tn order to simplify equations (2.7), let us comsider the
expressions (2.3) and (2.4), With the introduction of the symbols

b 2¢
€ = —— €. + =€+ —¢€
g 1 sy 2 8y 3
X = 2 X, + LI > (2.8)
Si Si o~ si
519 = a2 + b2 — ab + 3¢
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these expresﬁioné,vfor 132 %3z . can be traneformed into
1 L oy | _ "y ! 1 -=
.o"; SXI-?- 5 BY,Y) = 30 £y ~ Z_Xl> - sié - -2-)- b) (e — 2Y)

1 1 n o | .Y (e 5% 5.9)
E;- 6Yy---§ XX>= 3 ,EQ'ZXQ)"Si(. -8 (¢ — 2% 7 (2.9)

—

and divide both sides of the equation by 7lv h; ns ie easily seen,
wo got = . .

i, =& (2.10)
Introducing ¢ = Z X into oquation (2.9), we get finally:
for 1>z 2 :
. o) . —
1 L ax = M€ "Nz ; L 7 5 Y%
a;éxx -~ ‘r'.r}' SI}D = J!J-Cl - 3[«1}(12 + SiQL hnd ’é’ b)(z - L’O)X
L (sy —Lsx, )= me, - 3i%ge 6 ioyig(z'w}z»)?} (2.11)
oi\ ¥y 2 % 2 20 T o o )

1 - e (- .
= 3 = - TE . N
= X. 2{453 JMTZ + ssclz Z
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%—I(SXX ~ & ‘éY) = 3h6, — 3%y 2
l l . - N ‘.
EZANGE A SXX) = ot = Hop? f (2.12)
1 -
-&-;.- 3%, = 21, 63 - Qp,OTz
-t

From these equalities it is easily seen that the system of
equations (2.7) can be written in the form

1 Y S e 3o -1 3 2%
E%; STl - §v5T2> = 3[%0 + 1B+ (g - ”)ZqJGl + %{Po - u)(} - Zo?>A1

. . 7 Lo N - O\
'ﬁ%; BTp — % 81y ) = 3{Tig + B + (fo = W2, jep + 2o = (- Zog>y2

s30(1 = 25)°%

(2 137

el B

The relations (2.13) permit the derivation of a result extremely
important for the theory of stability of shells: multiplying the
first by a/s;, second by b/sy, third by 30/31, and adding we
obtain

<(S

= 4 G - %)atvl + (b - -é- a) 8T, + 3c88 (2.14)
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From equations (1.7) and (2.8) we have . o
R A B  (2 15)

Differentiating equation (l 4) we get

' o
o e =3u-——~--l———- (2.16)
1L -w 0‘1 d.ei ; dei :

Returning to the initial expressions for the forces and strains
before instability (Tq = WXy, S =hEy . ) we transform

equation (2.1k4) into

- LE -
(1~ 2)% - (1 -2,
doy |
B - =
de 4
) e 8T 4+ e BT, + e 158
BN el Y 2 X -0 (2.17)
dag X T + X T + 2TS
I 3 -
dci

where E = 3G.

Solving this quadratic equation for Eo = Ezo/h we find the

thickness of the region II—>II relative to the thickness of the
ghell

- — T
1-2, 1/n B Boy'(1 +9) 8

Here the quantity ¢ 1is defined by

E - g,! 8T, + e_ 8T _  + e_ &S
1 T1 1 * Téxz + 257
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and is invariant with respect to a rotation of axes x,. y.iabout
the z-axis, bocause the bilinear forms in tne ‘Aumerator and denomi-

nator.are invariants .

We have obtained the following. result: The regions II— IT
and TI—Y resulting after buckling of a shell are divided by a
surface given by equation (2.18); the position of this surface
within the shell devends, in general, both on its state of stress
and strain before instabllity and on the form of buckling, namely,
the ratio of the work done by the ndditional middle-gsurface forces

on the strains in the base state e,,5Ty + evyS‘I'2 + e yﬁs to work,

arising at buckling from the distortion of the middle surface, done
by the projections on the normal of the forces T T,, S . ..

Tl)(l + T2w2 + 2»31- .

Let us pass on to the calculation of the béndlnb and twisting
moments resulting from the system of stresses (equations (2. ll) and
(2.12)). By definition we have _

nh
SM. = | 2 X z 4
15 n z
2
h
8M2 =f_£5¥zd7 S (2.20)
5 ,
nh
g | 2
SH —L/- E X 7z dz
.2
-~

Calculation'gives



T

h2 Ui

_oh

NACA TM No, 1116 .- 15

~

* F’i(a -39 - 57, + 2)F

SMQ——’SM)——S'(LLO-u)(l-—z?36--6[ +u+(uo—u)z~li

. si<b ~-% a><203 - 32 + 2)%

;;;: 8H = -—6(!-’-0 - ﬁ)<l --_1—2024)53 - u[ﬁo 'H_L +. @o - 1237

+ sic<io3 - 3%, + 2)3'5 ’ (2.21)

From this too can be derived a relationship analogous to
equation (2.17) but cubic in Eo and heving in place of ¢ & new

quantity containing the ratio

?xxaMl +‘eyy8M2 + exySH

T1X) + T X, + 287

Thus, for the general case of ingtebility, the connections
between the variations of the resultant forces and moments and the
variations of strains,. curvatures, and twist or, in the final
analysisg, the variatione of the three displacements are given by
the relations (2.13) and (2.21) where in place of z, its

expression (2.10) must be introduced.

The five quantities: the variations of the three components
of displacoment w, v, w and the variations of tho two trans—
verse forces N;, Np, must satisfy five differential equations
of equilibrium of the shell.

‘A1l the expressions obtained above remain valid both in the
cage of olastico-plastic gtrains and in the case of purely elastic
strains, in the 1atter case it is merelJ necessary to put
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aof{e) =0

Iet us list the interesting features of the expressions (2.13)
and (2.21).

(1) If at the elastic limit the Variations of the forces 8T,

8Ty, 83 depend only on the gtrains €i, 2, €3 and the varis ions
of the moments 8, 8M 8H only on the distortions Xl, Xg, T
then beyond the élastic llmit both depend on the gtrains end the
dlstortions,

(2) If at the elastic limit the stiffnesses of the shell in
extension and bending depend simply on the thickness of the wall
and. the modulus of elasticity, then beyond the elastic limit they
depend both on the construction of the shell and the forces acting.

3. CASE WHERE INSTABILITY IS NOT ACCOMPANIED

BY A CHANGE OF MIDDLE-SURFACE FORCES

Placing

8Ty = 8T, = 83 = 0 . (3.1)

we find accordingly from equations (2.19) and (2.18)

-

9 =0, 1 -3, = (% - Zo) - —E = (3.2)
. 0.0'

\/E ﬁ-\/

In this case, as 1s seen,-the surface separating the regions
IT-»IT and II— Y does not depend on the form of buckling and
is defined only by the state of stress before buckling, namely,
the invariant E" = dci/aﬁi, that is, the slope of the curve

0; = 04(e;) at each point of the shell; if the intensity of stress
o3 before buckling is the same at every point,‘then'the boundary

between the regions ITI—II and IT— Y is a surface parallel
to the middle surface. '



T

have

(uor-p.)<l~'——202) : (di > (1..2)‘-/ 5 Y\ _

—— = __ - - -— + | - - A
St 2kg + B+ (g = R)Eg ] aANERE 6[uo+u+(u - 1) l

1%
- )1l - 7 - ( -z -
e, - (ko ”( o) _% ol ) 2 X>

2luo i x lig —wIZ| B NTL 99 6y ur (o “”«z_.!

BRI (L% MRN O I 5L
3 ?{{Lo + 1+ (B ~p)Z } ] blo 4 p o+ (kg = u)u;}

ST T em s
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Taking ‘intolaccouhtrrelations (1.7),:(2:8); and (3.15); we. .

wherc the. 'guantitiés

Xx' = Yv . )Ez
K & Y, = - X
X o] J o .Vco'.l

reprosent stresses re‘ferred. to thelr 3'.114:,ens'ity beforé instability,
sc that

On the basis of equation {3.1) we find from equation (2. "’)
eypresgions for the straing in the middle surface of the shell —
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In contrast to the case of eélastic ingtability here the
following phenomenon is observed; if buckling of the shell
beyond the elastic limit takes place under constant middie—
surface forces, then it is accompanied by middle-surface strains
proportional to the ensuing distortions.

Enterlng these values of the strains into the expressions
for the bending moments (equation (2.21)) and collecting terms,
we obtain . v —

eu( 1 _ = e 1:=\s
;1-5 \5M1 -3 6M2> =~ Ll2p (1 ~ ﬂr)xl + 12u,(1 ~ o)(Xx -3 YQX, '.

2k 1 =. = 1=\
= |dM. - = BM = 12 1 -¥)X 12 1 ~XHY =X WX .
hg( =3 1) 1200(1 = V), + 120 )<y LEJE P (39
) [ : — - = o
: ;5 SH = — Su (1 —¥)7 + lQuo(l —-K)ny
-

where -

) = 2\2 '

S(M - u) 1l -2, ~
Buo ¥ = SA (‘ _> + W, - u)(} - Zog)
ho + K+ (Ko — H)Zo :
; lS(uo—u)<l~z (l-‘) ]{\'
= 3
1ou X = 12g 5 — + 2<\ - 32 + 2
Ho + 1+ (g = B)Z l
. (3.6)
Let us now introduce ghe quaentities : o
o :
UE —
: de . X
K = e s ko= 2 (3.7)
L dci E
/E + /
\ &

The first represents a generallized von Kérmén moduvlus for the
casc of a complex state of stress; the second, the relative modulus.
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On the basis of equations (l h) and (3.2) we have

Ho — B = Hy® ——l+f

and, consequently, the functions V¥ and X cen be expressed in
terms of the rigidity decreasc function w and the relative modulus
k. After rather cumbersoms transformations we obtain

¥ = m(:

'ulﬁ})ﬂ . X=ka+¥ (3.8)
2
RS ST
L.
Solving the system (3.5) for the bending moments we obtain
finally the basic Tormulag :

i
_51-' == (l - “l’)(Xl + %" ) %(l - - k\X <X}C/]. + Y X + 2X Y)
&My 1 3 gl £ - T )
— TT e - ‘ X o X — — —— K X T

5 (1 - 2t 3 1> (- k)Yy<XXY1 + T X+ exyT> - (3.9)
8H _ 1 3 (— - =

— T2 e — - - - -k X

= (1 =07+ 20— - 0K (E - T - ?xyT)

where D denotes the usual bending stiffness of $hefshell

D= l Ehé_;ﬂ

, ’1.‘2(1_ - v2)

for the value of Pojsson g8 ratio v = O 5.
Let us point out some oonsequences of the Zreiatlons obtained:

(1) If the characteristic of the materlal of the shell o; = o3(¢,)
1 ivvy

has a pronounced yield-platesu, so thet at some point the intensity

of stress o; = 0g and doy/des = 0, then the generalized von Kérmén

modulug at that point becomes zero, but, in the gemerzl case, the shell,
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nevertheless, does not lose its stiffness completely, since, besides
k=0, V=w<1l, The smallest stiffness will correspond, to the

end of the yield-plateau where the rigidity decrease is greater than
any other point on the plateau. The only exceptions are geveral
particular cases to which belong von Kérmén's problem of the stability
of a strut.

(2) The bending moments resulting from buckling ere linear
homogeneous functions of the distortions and have the potential

e 2 ¢ 2 v 2 .2 , ) s (7 < -
W=l (1~¢)Ql £ XN+ ,-x-AT.)‘-—-%(l-—\.f-—k)(‘XxS_+YyX2+52XT>

! ¥
B, = ~ % > | | (3.19)

The function W represents the work of the hending moments on the
distortions of the middle surface resulting from buckling referred
to unit area of the middle surface, so that the total work will
equal ‘ o '

;o

/ /’/ W ar
(2T,

This makes poséible the spplication of the method of Timoshenko
to the analysis of elastico-plastic stebllity of shells,

(3) As the two terms on the right-hend sides of the relations
(3.9) show, the stiffness of the shell at instability beyond the
elastic limit depends on both the plastic deformations before
instability end the relations between the acting stresses Xx’

Yy, and Xy. Exceptions ars those cases where betore buckling
" there exists tho relstion

dui o
-—-é—-="—- 0'1=A€1
¢ &
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true, generally spesking, only-in the elastie region where A = E,
However, for some materials the characteristic oy = Gi( i) nay

:'ha#e pojnts where the tangont goes through the or*gin of coordinantes
so that A <E; at these points. :

(D:M l—'\f[:k:ﬁ __L'A >
(2 — Jk)2 (VE + JB)

The formulas (3.9) in thls case show that the stiffness of the shell
is proportional to the modulus X, and the critieal forces are
obtained from their elastic values by replacement of the modulus,

(4) The forees Ty, T,, S perform on the middle surface

stralns ¢, ¢p, 9y = 2¢5 work which on the basis of equation (3.4)
or equation (2,2) equals ~

TlEl + Do, + 2863 = Zocrle TQ‘P o QST)

I stability 1s Inveshigated by the method of Timoshenko, this quentity
may be omitted from the exprossion for the work of the inner forces,

1f also there 1s omitted the equal work of the peripheral (external)
forces on the dlsplacements corresponding to the strains €15 €ns

€3; that is, the work of the external forces should be calculated

anly from the displacements arising from the distortions of the
middle surface,

L, STABILITY OF PLATES

Let =x,y be Cartesian coordinstes in the middle surface of the
plate and w(x,y), its deflection uwnder buckling, The curvetures,
as is well known, will be expressed by the Tormulas

o) pa) Py
X, = v XE = §_% T = 2R (:.1)
dx2 oy dx Oy

The work of the perinheral forces on the disp]acements erising
from the dlstortions of the middle surface 1s egual to
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AT 4 -4

+ way 2Xy way) dx dy (4.2)

and, consequently, the increment (variation) of total energy of the
) shell due to 'buck_ling 1s’

ol

The condition that this quantity equal zero
J=0 ' (4.4)

yx'y,

"'Ui Xx"’xe"'.Y"'y +2XWW)] dx ay  (k.3)

represents the generalized equation of Timoshenko for the case of
elastico~plastic deformations.

In the first approximation the equilibrium of the shell after
ingtebility is neutral; that is

&J =
In order to prove this statement, it is sufficient to show
that the differcontial equation of equilibrium of the shell after .

buckling and the boundary conditions proceed from the condition (L.h4).
Varying equation (4.3), we obtain on the basis of equetion (3:10)

N )
B = ‘/‘—vSMlSXl - 5M28X2 — OBHST + hdif XyWiae + XyW BSWX

+ hal<Yy wy + Xyiy SWEJ dx dy

’I "BESM . \2 : \
B SMA — o - .
I 5 SH 222 hoy Xxxl + nyg + EXy'r J &w dx dy
Bx dy  dye .
/ < (8Mlz + am) Bwy + (smpm + 5Hz) By
T U TR g [ds .

‘ - -—
- !—hai(}{x"x + ¥ywy> + By + —a—:;—- 1 + —g;r-— + g}-:.m
| )
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Here,. 1, m are the direction ‘cosines of: the normal to the
boundary of the plate and X Yy are-the stresses on the
boundary ‘ : o

iV = Xx'l + Xym
?V = ?ym + XyY
and the qﬁahtitiesv'
%M 3em
S 0x A
+ —= 5N2
oy dx

represent the transverse forces.

Because of the arbitrariness of the variations ©&w and

%%K = Bwyl + Bwyu, we find from equation (4.5) both the differ—

ential equation of equilibrium
S aeaM

N hoy (R + Tp + 2E7) =0 1 (1.6)

and the kinemsatic boundary conditions, elther combined or in the
form of Kirchoff's conditions, that 'is, the usual conditions for
plates.

In the general case the forces Tl’ TE’ S appear as known

functions of the codrdihates ‘X, .y and hence the strqsseé"“

X, =

Ty
X" n

-
=2 x .8
Y& “n Xy h
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end the guantities ¥ and k are variable, Taking into account
equetions (3.9) and (4.1), we conclude that the equation of equi-
1ibrium (4.6) will be a homogenecus linear differentlel equation
of the fourth order with variable coefficients containing all e
possible derivatives in x and y from the fourth to the second
order,

Let us write this eguation in explicit form for the case where
the forces acting in the middle surface of the plate are constant.
For axes of coordinatos x, ¥y, we shall take the principal axes of
stress, since the latter will be straight lines.

In this case the shear stress X_ may be put equal to zero

without loss of genmerality., TFrom equation (3.9) we have =

M, - A N A - S -

i N SR i P A +§(1.—'\1:‘;-k)‘xxxx-“-’j§+Yy§—3’-

D Ox~ 26}’2 X< aye

&M, 20 220\ e ¥

- (1 = V) 9w 19w\, 31 -V - k)y& XX'SQE + Yy v (4. 7)
ar? 2 P L ax2 dy?

§.}.I.=_;1.(1qw)-§?-‘!—

D 2 dx oy

S——-

Tntroducing these expressions into equation (4.6) we find the
bagic differential equation of stability {generalization of Bryan's
equation} '

/‘ -,
: . i
1;_13_1—*~__k§}c2 §_h"_f+2 1_%}_:_‘11._:_.12233( _OSw_
ooy v et 1-% V) P o2
’ /

. , _ I ho - P
. l_%l-—‘l’-"kYyQ 5‘{7..#5_1 xx.a_w+ny-§E;—§ =0 (4.8)
' 1 -V dyt (L -V¥)D\ T oxe oyt )

The quantities V 'and k are functions of the intensity of
stress and can be evaluated for given intensity o, by formulas (3.7)

and. (3.8) if the characteristic of the material of the shell 1s
given o3 = 03(€q). _
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If, wnder the action of the given forces, the shell does not -

... go- toa Tar beyond the elastic limit, . so thatu.oin-differs little .

from the yleld llmit of the material O the funetion ¢ will be

an extremely small quantity and cen be neglected; or the other hand
the generalized modulus of von Karmén k equal to one at the
olastic limit may diminish greatly in accordance with the groat change
In the modulus dd%/del in the zone o¢ transitlon to the Jleld limit,

The generalized equatlon of Timoshenko for a uniformly stressed

"plate takes the form

. ,’ .
(1__11,)jt/(k12 xlx +72) dydy-E(l—-,r-k)/ (Xxxl

X2)2d5d3r+—-——-/"/wa‘+Yw2) dx dy = O (4.9)

It 18 easily seen that the difficulty of finding the critical
forces by equation (4.8) or equation (%4,9) is not much grester than
in the elastic case., Tue difficulty lies in that the sought critical
stress (for example, ol) enters implicitly in the coefficient of
every term of equation (4.8) or equation (4.9); whereas iIn elastic
problems it appears as a coefficient of only one term, Thig diffi—~
culty is eagily avoided if instead of seeking the critical stress

Gicr Tor given dimenasions 6f the ghell we sedk the critical

value of gome characteristic dimension for = given value of - o
Let 1 %be the characteristic dimension of a plate. In =2nalogy

to a gtrut, let us designate the flexibility-.of the plate in relation
to the dimension 1 by

Y =111¢£Z>(1 -2 ) - ‘h,‘lo)

that 1s, the flexibility of a flat strip of length 1 and width 1.

With the use of the dimensionless coordinates of points in the
plate .

i
it
~ K
gt
i
=~ [
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equetion (k.8) may be put into the form
. .
e o Bes e O A A

ll 12 o 22 ol x PN

Bx 5= oF AN oy

and equation (4 9) golved for A2 bacoues 3
>w Py 5) w\ By .2 2w Pw

Jl + 2e. '"E - N )
VE a‘ . \y%/ Sk OF e

7 V1o N2
d.'r dy -~ ¥ / & dx dy
oF

y :

s:m

dx 4y

i

N

(k.12)
where
31— ~kx%2 3L —% —k o
o} - : X ) -
1 b 1 - x 22 1 - v
3L —-¢ -k o~
8, = " I, t=1-v

The problem comes down to finding the characteristic value of the
paremeter N.

Iet us examine some concrete problems:

1. Shability of a couwpresged strip,— A strip, whose length 1
is considorably greater than its width b 1s compressed in the
longitudinal direction with the stress "Xx’ with tho other stresses

equal to.zero Y Xy = 03 the long adges are free of foreces, We
have ‘

—'X = l X = Gi

.Sines the bending moment 8M2 and the twieting moment B8H are zero

along the long edggs (y = 0, y = b), then becauss of the small
width they may be taken .equal to zere everywhere.
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From equation (L4.7) we find.

T =20 X =---J.=,.'.-_v ’SMl’;-%kal : (’4-.13)

From equation (4,6) we obtain.. .

4L kg 2 ' ‘ ’
o'W + 3 Xe_a Y _o (L.14)

3% | 3EK %2

If the characteristic value of the parameter

92 =l
T 3Ek

is known for given edge conditions at the ends % = 0, X =1, the
critical flexibility becomes nown:

S et

2

———————

B
— A = — (L}-,lﬁ)
/3 cr = -‘cr \\/ oy

Thus, for a freely supported strip Yoy = @ and the formula (k4.15)
coincides with the results of von Ké%méhaEngesser.

2. Cylindrical form of buckling.— If the transverse dimension b
of a rectangular plate is sufficiently great in comparison with the .
thickness h and the edges y =0, y = b are free, or if the dimen—
sion b 1s considerably grester than the length 1, eo thot by
St. Venant!'s principle the boundary conditions at the sides y =0,
¥y =b do not influence the doformations of the plate, the form of
buckling will be cylindrical, Assuming that in equation (h.21)

X, =~1 Y, =0 wo= wi(x)

] ob%éin

E(l =V + 3k) g&_v; 224 o | (4.16)
ll-O'i djcli- aze _’ ) .
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Finding the critical value of the parameter .

Lo
i A2

7= . -
E(L =¥ + 3K)°

for given edge conditions at % = 0, £ = 1, we obtain the critical
flexibility | .

. B(L ¥ + 3k) 4
Aoy = 7cr\// he (%.17)
} i

Tor frecly supported edges ycv’;"ﬂ,

3. Stability of a ymiformly compressed vlate of arbitrary plen

-

form.— Taking as the condition of the problem

we transform the differential equation (4.11) into

ho,
Vhw + 72V2w =0 7-2 = e 32 (4.18)
E(L - ¥ + 3k)

This équation'differs from the well-kmown equation for elastlc
buckling’only in the expression for the parameter 7, and therefore
-the characteristic numbers Tor will be the same as in.elgstic :

problems. -

~ Hence, the genersl solution of the posed problem is-given by -the
formula - : .

o [ra oy e A

)"cr = 7'(31«\/ (h‘-l9)
hci

where 7., must be teken from the solution of elastic problems;

For example, for a circular plate of radius 1, clamped at the
edge, we have 7o = 3.8317.
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4. Stability of » freely supported rectanmular plate compressed:
in one direction.- A plate with the boundary

is uniformly comprags@d'in the, x-direction. We have
= X

.Yl’y:OZI X, ="lj‘,: gy = Xy

x
Assuming, -in accordancé with the boundary conditions,

w =38 sgin 3 gin BIX
h . a

we find from the genoralized equation of Timoshenko (4.12)

- . | . ).“ ) 2':..
' x=.’.‘l/E(1"‘1’) LoVa3k 2, sl gt .20
‘ a % L - o®® v | (1.20)

Let us investigate first a mlate infinitely long in the direction
of loadlng a = ., For the characteristic dimension 1 we may take -
the width b, The number of half waves m will be infinite and the -
half wave length a' will be - ' .

it '; . a\\'
a,. o -
v [ ‘m,"a;m
£200.

We have

; E | ‘15w \2  /,0\2
ey B | oy 30N (e
\/ i WLy (a"/" <.b J

and, consequently, the smallegb flexibility,eorxaspondsqto-ﬁhe‘waveV K

length
. hig .
ot ep LoV o+ 3K (%.21)

\V osa-w

n i
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and:dsvequal Yo . LiLonvorlors Lo e

A = 7 g[_i‘.(}':_ﬂ 1 +\\/.].:._:._§f_.t_3—1§ (’4-.?.2) '

Tt 1s seen from equation (%.21) that each eritical stress 04
hag its own wave length and, for example, at the beginning of the
flow plateau of the material the wave length may be 30 to 40 percent
less than at the 1imit of .proportionality. As is seen from equa—
tion (4.20), for a plate with arbitrary ratio of sides a and b,
the critical number of halﬂ~waves is an lnteger satlsting the
inequality .

T ',
m+ 1 >.E§31> m>Q
5 ;

For a square pléte a =-b' =1 we have m =:1. and . -

hor ?,g‘“\/?i’l}?)(l«-—'w) w36 L (h23)

There is no need to extend the number of examples of stability
of compresged plates, inasmuch as the method of solution of the
problems remaing general and differs little from the solution of
corresponding gquestions of elduth gtability, not. only in the o
course of the calculations but also in the possible forms' of )
buckling, in the sense of the form of the function w(x,y). We
always obtain the exact or, In the general case, approximate value
of the critical flexibility or critical forces if we put the deflec-—
tion w(x,y) obtained for the elastic problem into the generclized
equation of Timoshenko (L4.12). Thus, we will obtain the exact expres—
gion for the critical forces and flexibility for a rectangular supported
plate compressed in two directions, if we place

nxy .

D L5 (1 SR
= B sin — gin -
. ¢.a . ' . b

and select the appropriate values of m. . and . n.
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5. SPABILITY‘ OF. CYLINDRICAL SHELLS-,LQADED BY EXTERNAL
FRESSURE AND ATIAL COWRESSION
Let us investigate the cylindrical form of buckling of a
cylindrical shell under the action of uniform external pressure p
end uniformly distributed axial force. The x-axis-is in the direction
of the generators of the cylinder, and the y-exis is tangential The

stresses Xy, Y y are taken compressive (negab:!ve)

“From the conditions of the problem we have :

XK. =T =
1 0
Xy =0
7, - X,
VS R S A
Y = ' YV ponant
ST e e g : 2
. VI - Xy + Yy

From equatlons (3.9) we obtain expressions for the moments in
terms of the nonzero distortion Zps

el — bt

D
B = -3 1-‘lf-—(l—\lf-k) xTy|

O

N\

(5.1)

o~
DL v = 31— - 1T 2l
M, D1~} u(l Ir k)Yy] 5
-

S
LI

[}
" O

The gtiffness
" o_ lr. . 3 e 2"
D _Dll_\t,_.l;(l_\p..k)yyi {5.2)

. -
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depends not inonn.thé:degree of plasti@'deforﬁation (og, k, V),
but also on the ratio of the tangential to the axial stresses.
The smallest stiffness occurs when the quantity Y&E is a maximum

Tt B o

" For a circular cylinder this condition means that the resulting
axial Torce ls equal to the lateral pressure multiplied by the area
of an end of the cylinder; it is realized -in the case’ of cylinders
with closed ends, subjected to external pressure on-all surfaces.
The smallest stiffness will De

D" = XD

that is, obtained by replacing Young's modulug by the generalized
von Karmén modulus X,

By way of an example let us investigate a complete circular
cylinder of radius..R,  subjected to a congtant external pressure
p, and axial compressiveafofce_ Q, - so that

Q
weﬂRh

The corresponding elastic problem was solved first by M. levy
(reference 12). Referring to the well~known book of Timoshenko
(refersnce 13) we. shall write, without derivation, the expression
for the curvature"xé in termd of the normal deflection w, and
the moment 5M2 ) T

Sy (5.3)

éMg“:'RpW = —ha; Y. w

o

On the basis of equations (5.1) the differential equation of
gtability will have the form Co




&
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7+ and tHe! cittedl ‘stresnil . fourid ‘Trom the condition of pertodioity
of 1 ' PO SR L e I

12 Red i
RPN b

ts solution:: i
e e F e

A

2h' "“:"v-f Lo R - R nr . L 1‘1.'," (A
B S B e g a5 ) e
= N ‘ N, R

e

g '~":.'."‘,j_‘.i~'_“‘ o GiR

E I:ED" "

gy;Uéing‘expressibﬁ,(4;10),f5f:theffiqxibilityffx;ﬁand choosing
obtain the critical flexibility

Gk

' the circumference 1 = 2#R as the characteristic dimension, we

R "‘Yy , PR R I e ‘i

C ) A
L RO RO . . DL . are, ! i
or, in!the case:of uniform pressure.on all the surfaces of the,... ...

N
cylinder (X, = 5 Yy
M /

o ——— e - e

. 2 /. ;o )
Moy = T \/9.—0/-3-?.5 (5.6)
1

and in the case of absgence of'éxial“forde"(ﬁi‘ﬁ:oy i

! - T -
A = 3@- - W
er BT V/ci(}“ v +,5h)' :
- L. } .4 L A . - . ..
6. LONGITUDINAL BUCKLING OF A CYLINDRICAL TUBE UNDER

AXIAT, FORCE AND UNIFORM-IATERAL PRESSURE

B «

Let us investigate the axial symmétric form of longitudinal
buckling of a cylindrical tube of radius R. For the elastic case

this problem has been studiled from various points of view by Lorenz,

(reference 1h),Tzell, Timoshenko (reference 15), and others., The
complication beyond the elastic limit consists in 'the fact that-

© buckling is accompanied by changes in the middle surface forces,

and hence, in place of the simple system of equations (3.9), the
general expressions for forces ard moments :(eguations.(2.13); (2.18),
(2.19), and (2.21)) must be used; While the boundary.of the plastic
region z, will be a function of the form of buckling, and there~

fore;, in general, the differentidl edustion of quilibriwmm becomes

considerably complicated and nonlinear.

L : .. ' ' Coe ‘;_-.'.. o
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LTI
e

P R LSRN A o
Let us retain the coordinate system.in N, Stability of Gylindrical
Shells Toaded by External Pressure and. Axial Compression. . We. shall .
take the base state of the shell befors buckling such that the axial
compressive stress .—X is twice -as grént as the tangential stress

~Y - caused by the uniform lateral: pressure

F

.. ._{ w}_:' BT . - . R . _....‘. - oY . : ‘
i X:X::'gY CL Tl = 21_‘ ES-’J!& lO,-_,":.:‘ ‘ s (6.1)
As is well kndwn, ‘at the elastic l;mit "the choice of the quan~
tlty ﬁ' does not-influénéd ﬁhe critical value of the axial stress
Xx’ and beyond the elastic lwmwt our condition introduces a basic
simplification into the solution of the problem. -In féact) the o
conditios -(6,1) 1s egiiivalent to the assumption that before buckllng

the tangential strain e, ., = 0 as follows from equations (1 1)
moreover, after buckling we have

o

81y =0 85=0 . 8T, #0 (6.2)

o

consequently, the boundary zO between the elastlc .and plastic
reglons accordlng to equation (2 18) turns out to be constant

EO = (6’3) .
E w ==
dﬁ .
\ .
Fromxeéuafiohv(2113) we' have . -
8Ty ORI M P
- Ea'j-.'-—'s QO + B+ (uo - U-') 20 el + %(ﬁo - }1)(1 - .Zog)yl
o % a=(1 — Zo)g‘:1~+ 5 Xé;) R S S A6.4)
28T _ = o 2' ’ N
oy 3‘}_10 + 0+ (B, - u)zci-‘e2 —(uo ~ 1) (1 - 32,5)%
38 = 0 €3 = 0 y
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The distortions X;, X, end the strain ¢, are expressed in

terms of the normal deflection w . (positive inwards) by the formulag

2

=2% =&Y x, =2% =¥ ¢ =-X (6.5
X.thaxa EheRg 2 R

and, consequently, equations (G.l4) give, firstly,

[

81, = — k'Bh ¥
R

’
h

- .

k! =l-—-é-mll—-'io+=8—;R- (l--"z'og) =l'~w(l-%’\/'1€) (6.6)

where k, as before, is the relative gonerallzed von Karman modulus
and, secondly,

. iy — a)(L - 2,2) + a?(l - Z, )2
"(El*%‘ep\F - . <\<1+
Blig + B + (it, = )zo|

ol

%) (6

Formules (2.21) give the value of the moment, SM;

,
oMy = k"D(y + % x2>

4

s

where the coefficient k" 1s given by

' du . : .

1 = 2 1 1 1\ - = 3

=l ==l =23} L e ) B in L2 = 3% 4 2 :

; n ( O) E( Ede | .D‘o. : i
P

..3_“)("‘202) m{e‘. \/-i-Q Cl)*"?-n—-‘\(lw

82— ul-z) dey /

- Taking into e}qcount thet on the basj_s of e,quationl(_éj)
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we obtain after simple trangformations .

Thus,

é

oM,

: —-) | C (6.8)

The differential equation of equilibrium of an element of the
ghell. after buckling will be

5 ' )
a-sM. - - 8T

1+Tl§_ﬂ+q_£=o (6.9)
ax® ax? - R .

Taking as the characteristic dimension of the shell the radius
R ' and: using the expression (4. lO; +or the Tlexibility M we have

k X h
3 “x
k ﬂ;% -2 — a® z + kA = 0
ax- * o ax"
RO -
A= J12(-v e E o ) (6.10)
n Y n
==
R
o

where we have dlscarded small. quantities}of the order‘of h/R in
comparison with 1, : : . : '

-

‘"In our gase “
(6.11)

and since the coefficients k, k' are functions of the intensity of
gtress the convenient expression (6.10) may be written finally in the
form .
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N 2o,
«..1:«9-1'--» 1 7@‘“’ k2 =07 (6u12)

:‘:A,..:; Cax \/3

- ‘Satisfying the ébhditions'of su§?¢rtfét’tﬁe ends of theAﬁvbe. "  

, ST 2. .. 1.
s O ._g‘-z_=.0
axe . .

we. find the critical flexibility o

.=____\/kk,.

%k( __2-— \/k SR ,(.6.13)

The result obtained 18 very simple and may easily be suhjected

.'to experimental verification, but it is necessary to remember that

it 1s strictly correct only in the case where the tube 18 subjected
to axlal force and lateral pressure such that the ratio of axial to

tangential stress ls equal to two.

7. NOMERTGAL, RESULTS FOR THE MILD STEEL USED

IN VON KARMAN'S EXPERIMENTS

.. In thls paper, giving the method of investligating stability,
we cannot dwell at length upon the analysis of the multitudinous
technically important problems of. stability and give formulasg for
calculation, tables, and graphs for all the various steels used

...in technology., In ondeavoring to show' that the’ egtablished view~
- point concerning the possibility of a wide application in practice

or formulas for elastic critical loads corrected according to the
von Kérmén modulus ls, in general, completely wrong, we shall
present numerical results in accordance with the: .above given ‘
formulas only for the steel used in the experiments of von Karman

The mechanical properties of the steel are obtained from the
tensile stress~strain curve for which Young's modulus, tensile
strength, proportional limit, and yield limit are
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B = 2.17 x 10°, o = 6800, o, = 2600, 0 = 3250 (in Xg/on2)

The first three columng of table I were compubted from the
stress-strain curve, and then by the. wse of formulas (L.4), (3.7),
(2.8) the values of rigldity-deorease ®, generalized modulus of

von Yavman, and the parameter V¥ wers determined and put in the
lagt three columns of table I,

In table IT are given valuéé;of ﬁhe.critiééi“flexibility

=1 \/12(1< v2)

for all of the above investlgated cages of instability of plates

' and shells. For each value of the c¥itical stress 0; are glven

three values of flexibility, in the first line . At -~ exact.by our
Formulasy inithe secand A approximatedAbJ correctlon'édcording
to von Karman's modtilus, in~the third x"'+ cowputed by, e formulas
~ of- the theory of elasticity. = ‘“ T R S

e
DERR

The last value h"' is obtained 1 1 oy formulus We place
=0 (k=1, ¢ =0),
Thus in teble TI are predented mumsrical values of the stiff—
nesses computed from the data of table I for the following cases:

(]) Von Karman strut and narrov. strip (Z 8, Oy ==Ky, Y = 0):

venh s

le ; n\/-——f”

A= A=

ok - Lo .i \Q”Gi.

(2) Wide strip with two free edges (cyllndrical bending,
1 = 4a,. Ui—~—X y—o) . . . R

gt o m;~w+om . By ow_ ri_
25 : \/ Lmi R )"2 "‘" o X? = yti o




x‘u:‘;:_ 33"",-_ ROt ERRERY]
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(l §3)X91rc§1ar pla?e Glamped at the edge under unixbrm COmpression _
-] = —G .
1 ‘ N

a 3. Bu\/E(l wya 3E) ’Lé";’..='3.8u"‘ s - g %_3‘&\/%;_‘
Y hqiﬁ‘ﬁf'q:."' S [ x 1

s
SA
¥

'; L. %

' (h) Long narrow plate, freely supported on all edges and compressed
in the.direction of. the: long edges. (width b = 7, half-wave" longth desig~'
nated by at X = *“i’ Y = O)'

t

Mt = \/QE(J =¥) |y, L=y s 3% ] \

i e 2]

Y
\ / : .
. <§l) - )4 1 -—-v + ‘Jlk ' R ,"“;-' :
.o b / A "l‘(l “‘y) . o K

N N I N
N )"lq.' = ‘n.‘\ Oi\"fK 3 (%-) = \/k‘

.o

o ‘ I*E e
WL a
A \/ A ( )

.y .
i vt
\ . .
. . . }
PR . .
5 . . 8y
e LA ORI o
. . !:, ’ oy X RN
- BT A . oy ,
. " ‘;‘ +
LY N .
- e v
;f




Do : s

ho o NACA TH Mo, 11¥g -5

A6 Tubey undsr ejcternal bregsure in the absence of axial forces A

~ pR 43 e gl T pe
Q = ET[R’XX = 0, Y = "Gi =~'I'l->: r JSEAN :,'_': ‘}';:-.‘,.,-.” ';.: ¢
- L R T i
rgh = :t\ /= (1 B 3 2 .»-;x6" oo, [REEE vy /LEE
ST Toy o LT e

G 87) Tube with external Dressure on a,l surfaces that 15, w1th

2, ) A R Gi*“'~“fw?f "
axlal force Q = nR i = 2nR X = =Y. 2 LDR oL o
‘ 2 y T __h \/3 “ : [
Voo NN g [ 12BE omo 128
M Ny ) o - M Hv/cﬂ
f oL 1 . \ . 1

(8) Longltudinal buckling ol a ‘tube under axial load and lateral

pressure Q:R, Xx=2Y —-—-——2_—3_-'01):
: . V. V37

1y

5

. Lot —~ P .
B 2 -k . w W - vm B
x':—-gklm-—————wm\.)\, =Bl Bk, MM = —
8 =5 < 2 )"_8, oy 1T T8 oy
. Loy ) ‘. .‘
IL the curves ci = di(k) ‘avre drawn they Will all. have a point

of inflectlon gt the Yield . platean .of ,the steel Gi = 0y = 3250 kilo-:
grame per centimetere, ' o il?iv .

As a rule, the anprox1mate tqeorv with von Kﬂrman’s correction
factor gives appreciably loweréd values- -of the crifical flexibility
and, on the other hand, the elastic theory gives anpreci@bly raised
values. It is 1nterest1ng to ;note that in almost all cases (except

for the square plate; where x5" 81 3) bhe values of the flexi~

billty A" became zero at the 1nflectwon p01nts, which means complete
loss of load bearing ability at the: yield. limit sccording to the
approximate theory; whereas, in fact, in the majority of cases the
flexibilities have finite va]ues at the inflection points

= 30 & 3L x?)' = 37 ~ ?;2 7”1;' = 105 ~ 119

| ~ 2 ~
x5 = 119 23 Mg = 104 ~ 118
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and, consequently, load bearing ab1l1ty*is maintained not only et
the yield limit but appreciebly beyond. Thus Ffor the flerxibilities

P 3

My =30 A = 36 Ap =85 A =87 X6= 70‘*

= A
3., + O RV

. R .
. - ST e

ae TR il R

stq?ilipy obbains at all stresses up to qi's~hOOkailbgram§‘tgr§’[a.#~,
cenﬁiméterg;finelusivé. S “f?; ;

Table IT shows tho complete failure of the approximate theory ..
of stability of plates and ‘shells in which plagtic deformaticns arve
taken into eccount with the sid of the corrective modvlus of .. . .
von KArman., This conclusion can be established definitely only
by experimont, but it 1s to be remembered that: (1) the experimentg. .
of won Xarpidn' gave completé agreement with his theory of tho -stobiiity
of struts and; (2) the theory of stebility of plates and ghellg . ... |
proposed here containg no arbitrery hypotheses and, being based on
clasglcal laws of plasticity and laws of mechanics, can already now.
glve this conclusion with a high depree of autherticity ' B

Y.

Trenslated by E, B. Schwarbz

National Advisory Committoe
for Aeronautics .
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TABLE I

oy €y % 103 ;?- x 167 ® k v
1

2600 1,20 2,17 0. 1.000 0.

2800 1.31 1.98 .01h 940 .007

3000 1.43 1.5k 034 825 017

3100 1.51 1.12 .05k 685 026

3240 1.92 .06 212 .0805 149

3250 | 2.1 to 2.7 0 .285 to 45| o .285 to M5

3260 2.9 .0k2 482 056 360

3300 3.3 J17 .540 Jhl .369

3500 h,7 .10 657 .163 JL56

4000 . 8.8 115 .790 139 .605
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TABIE II

ay A ).2 >.3 My x5 )'6 ).7 g
90,8 90.8 111 181.6 181.6 31k 314 14%0
2600 90.8 %0.8 111 181.6 181.6 31k 31k 1440
90.8 0.8 111 181.6 181.6 31k 31k 1440
8y.8 85.4 104 173 173 296 296 1290
2800 84,8 84.8 103.6 173 175 296 296 1300
88.5 88.5 108 177 177 306 306 1340
76.8 78.7 96.1 166 166 273 266 1120
3000 76.8 76.8 91.3 161 161 266 266 1130
84.5 84,5 103 169 169 293 293 1250
69.0 =R 88.% 162 160 251" 239 984
3100 69.0 69.0 8h,2 151 152 239 239 1000
183.2 83.2 101.5 166,14 166.4 280 289 1210
23.0 ho,2 51.6 132 136 146 80.5 296
3240 23.0 23,0 28.0 h6.2 105 80.5 80.5 328
8L.5 81.5 99.5 163 163 283 283 1155

0 3L to 30 41.5 to 36.6 | 119 to 105 123 to 119 118 to 104 o] o]

3250 0 o} 0 0 81.3 0 0 0
81.3 81.3 99.4 162.6 162.6 282 282 1150
19.3 36.5 k.5 11k 118 126 66.5 206
3260 19.3 19.3 23.6 38.5 100 66.5 66.5 271
81.1 81.1 99.3 162.2 162.2 281 281 11k5
30.3 k1.6 50.9 116.5 119 1hy 105 318
3300 30.3 30.3 37.0 60.5 110.5 105 105 o5
80.5 80.5 98.3 161.0 161.0 279 279 1130
31.6 39.7 48,5 106 108 138 108 268
3500 31.6 31.6 38.6 63.2 109.5 109 108 432
78.3 78.3 95.5 156.6 156.6 271 271 1070
27.3 33.0 40.2 85.5 87 11k 95 210
4000 27.3 27.3 33.k 54,6 100 95 95 350
73.2 73.2 89.5 146.4 146,14 o5k 254 935
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